GOES-Early Fire Detection (EFD) Project Overview

Alexander Koltunov, Susan Ustin

akoltunov@ucdavis.edu

slustin @ucdavis.edu

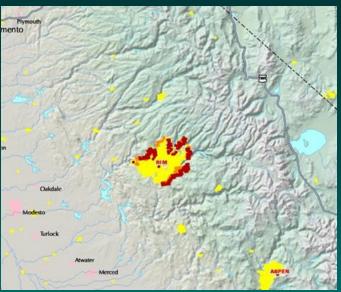
Vincent Ambrosia

vincent.g.ambrosia@nasa.gov

Brad Quayle

bquayle@fs.fed.us

Bruce Davis


bruce.davis@hq.dhs.gov

Active Fire Mapping (AFM) Program

(http://activefiremaps.fs.fed.us)

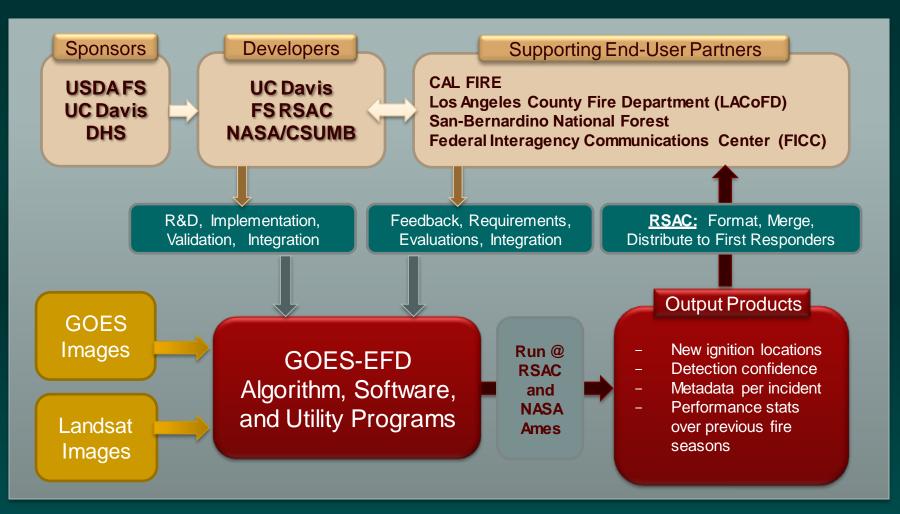
- Developed and implemented at RSAC in 2001
 - Coordination w/NASA, NOAA & space agency science teams
- Operational near real-time (NRT) satellite data/mapping/visualization products for wildfire management
 - "Value-added" data/products
 - All lands and ownerships in U.S. and Canada
- Facilitates wildfire decision support
 - Prioritize allocation of fire suppression assets
 - Focus tactical airborne reconnaissance assets
 - Key data input to several fire-related operational applications

GOES-Early Fire Detection (EFD) Project

<u>What is it?</u>

 An effort to develop a low-cost and reliable capacity for systematic rapid detection and initial confirmation of new ignitions at a regional level.

Project Goals


- 24/7 real-time surveillance for new fire ignition activity
 - Detect new incidents consistently within first 1-2 hours
 - Initially at a regional scale (Western U.S.)
- Low latency information for new ignition events to first responders
- Corroborating data/information for reports by conventional sources

GOES-EFD & Active Fire Mapping Program

Objective is to integrate GOES-EFD into AFM to:

- Complement existing related fire detection/monitoring products (MODIS, VIIRS, GOES, AVHRR)
- Provide standardized operational geospatial EFD products and web services to interagency fire community
- Facilitate integration EFD products/services into existing decision-making environment at dispatch centers and GACCs
- Support improvement of situational awareness and response planning/prioritization

GOES-EFD Effort: Structure and Participants

• Funding Sources:

- Forest Service/UC Davis Interagency Cost Share Agreement (I0-CS-11130400-009)
- DHS Science and Technology (S&T) Directorate's Long-Range Broad Agency Announcement (BAA): BAA 11-03-IDD.08-0011-I

Where are we today?

- *Alpha*-version (GOES-EFD v0.3) recently completed
 - Simulated real-time mode
 - Mainly Matlab implementation
- Case studies in California indicate:
 - Consistently and significantly more successful at early detection than the operational satellite algorithm
 - Commits 35% fewer false alarms than GOES-EFD v0.2
 - Potential to provide earliest alarm
- Algorithm optimizations and tests are continuing (as resources permit)

GOES-EFD: Intended Schedule

- 2013-15: Major development-test iterations, implementation, and integration: complete the GOES-EFD β-version
- 2015: Deployment of GOES-EFD- β at USFS RSAC as a component of the FS Active Fire Mapping Program
- 2015-2016: Near-real-time delivery to participating users;
 - Initial training and evaluation by participating users
 - User feedback and performance documentation
 - Follow-up optimizations
- 2017: Post-Deployment system maintenance and enhancement
- 2016-2017: Adaptation to GOES-R Advanced Baseline Imager

<u>Geostationary Satellites (GOES East/West):</u> <u>Frequent, Low-Cost Imaging of Vast Territories</u>

GOES Imager (NOAA):

- Viewing geometry fixed U
- Visible + Thermal Infrared (TIR) images
- @ ~15-30 min step (5-min during Rapid Scan)
- Effective TIR pixel size ~ 6 x 4 km over CA

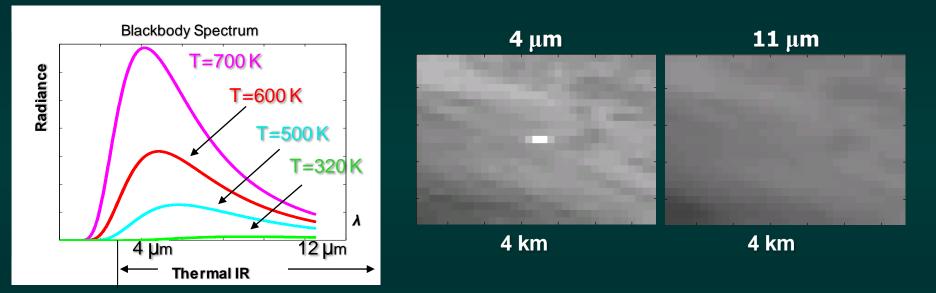
GOES-West: Visible band 17-Sep-2006 GOES-West: 3.9 µm band

Active Fire Monitoring vs. Early Fire Detection

Primary Objectives are Related but Rather Different:

Active Fire Monitoring	Early Fire Detection
Maximize % of detected burning pixels	Maximize % of detected new fire <i>incidents (ignitions)</i>
Minimize % of false fire pixels	Minimize the number of false new incidents (alarms)
Estimate flaming area, temperature, etc.	Minimize time to initial detection of an incident
Perform consistently all year-round globally (e.g. for comparative studies)	Optimize for fire season and a chosen surveyed scene

... and So Are the Optimal Algorithms

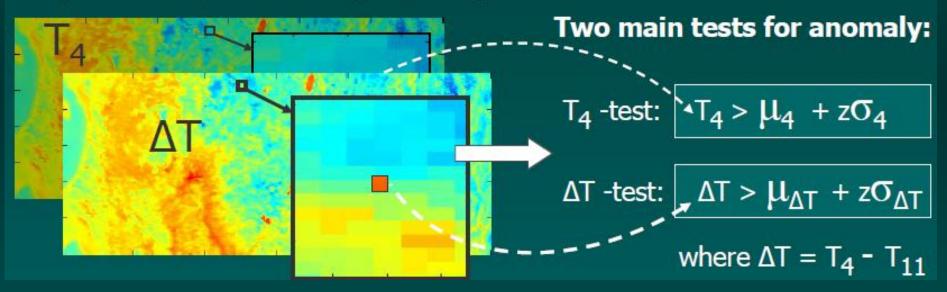

GOES WF-ABBA, MODIS / VIIRS Active Fire, AVHRR FIMMA

GOES-EFD

GOES-EFD is a tool specifically optimized for the objectives of early detection...

Physical Basis for Infrared Fire Detection

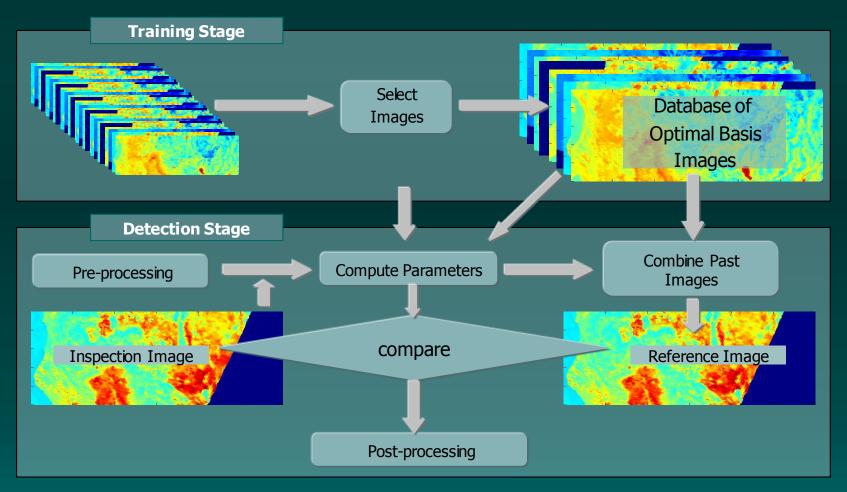
Planck's Law: Radiance $(\lambda) = B(\lambda, T)$ wavelength temperature fire R_{4µm} >> R_{11µm}


soil $R_{4\mu m} \sim R_{11\mu m}$

Primary regions used for detection: Mid-wave TIR (3 - 5 μm) Long-wave TIR(10 - 12 μm)

Heritage Fire Detection Algorithms

Based on contextual detection... find pixels that are much hotter than neighbors

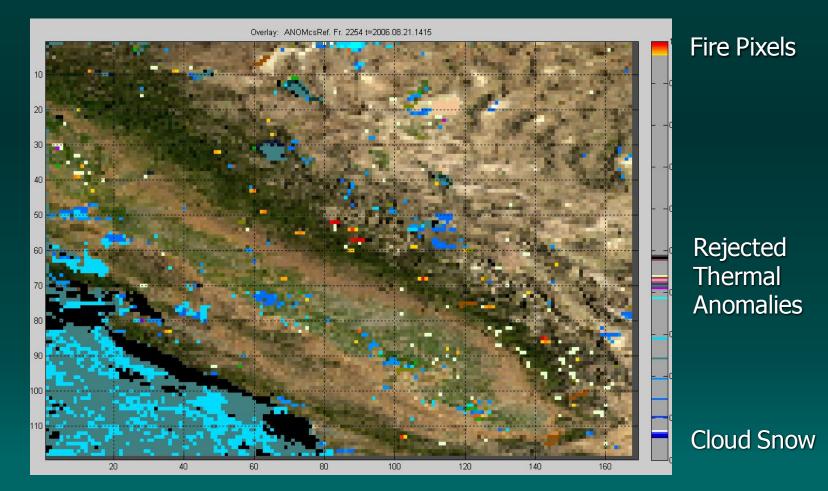

Brightness temperature images (Kelvin)

- Good for detecting large/hot fires relative to sensor spatial resolution
- Performs well in thermally homogenous areas

<u>GOES-EFD Algorithmic Principle: Merge</u> <u>Temporal + Contextual Information</u>

Multitemporal background prediction by Dynamic Detection Model:

Koltunov & Ustin S.L. (2007) Rem Sens Environ


13

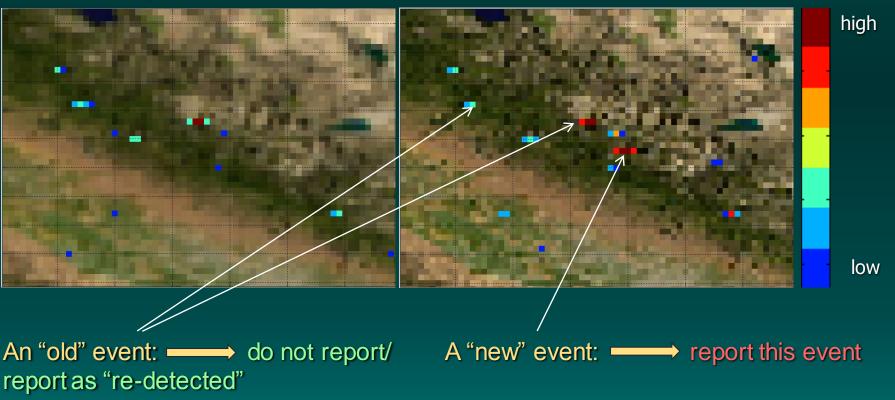
Koltunov, Ben-Dor, & Ustin (2009) Int J of Rem Sens

Pixel-wise "Unfiltered" Fire Mask

GOES-EFD analyzes basis images and inspection image in the detection stage

Anomaly Classifier: Excludes pixels affected by cloud, glint, etc. and classifies remaining pixels into one of 12 anomaly classes (7 for fire confidence classes)

From Pixels to Events (potential incidents)


GOES-EFD target objects are New Incidents (multi-pixel, multi-frame objects)

current frame

Fire Confidence

Event Tracker: Analyze the temporal evolution of spatially connected groups of fire pixels

past frame

Retrospective Assessment of Incident Detection Timeliness and Accuracy

- Very different from validating an Active Fire Product
 - Not a trivial problem:
 - Official wildfire records -> Frequently are incomplete
 - High resolution imagery -> Infrequent acquisition schedule
- Truth Data Sources:
 - Official wildfire incident records
 - Landsat-based burn detection
- While any kind of error in the database is possible, not all kinds of errors are equally probable
- Challenge is to derive useful and reliable performance measures despite uncertainties and biases in truth data

Koltunov A., Ustin, S. L., Prins, E (2012) "On timeliness and accuracy of wildfire detection by the GOES WF-ABBA algorithm over California during the 2006 fire season", *Remote Sensing of Environment*, v.127: 194-209

GOES-EFD Experiment With 2006 Fire Season

California	Detection Period:	40 days; 2852 images: Aug 3 – Oct 1 at ~20-min time step on average. Substantial Cloud Cover
GOES-11 Scene	Wildfire Incidents Used:	Large (>2 ha final size) wildfires;
		Central California only

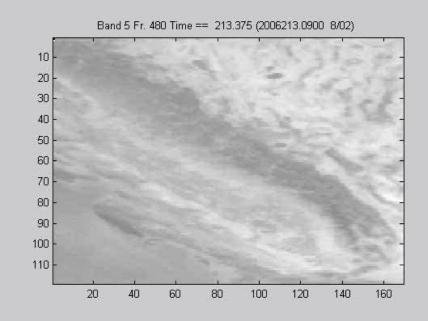
Sample #1: **13** fires with known initial report HOUR Sample #2: **25** fires with known initial report DATE

Used wildfire incident databases from:

- California Department of Forestry and Fire Protection (CALFIRE)
- Geospatial Multi--Agency Coordination (GeoMAC) group

Performance Statistics: GOES-EFD v03

Detected incidents	GOES-EFD regular	WFABBA @30min		
for 13 test fires with recorded report hour:				
Detected in < 1 hour	10/13	7/13		
Detected before reported	4/13	2/13		
Total latency reduction	142 min	45 min		
for 25 test fires with recorded report date:				
Detected in < 12 hours	15/25	11/25		
False (non-wildfire) or unconfirmed incidents	51	55		


- GOES-EFD tends to detect fires earlier than WF-ABBA
- Reduction of ~35% of false new incidents vs. v0.2
- GOES-EFD can provide the earliest detection alarm

GOES-R Advanced Baseline Imager (2016)

- Full disk coverage: every 15 minutes
- Continental US coverage: every 5 minutes.
- Spatial resolution : 2 km in TIR
- A new channel at: 10.3 µm.
- Fewer saturated pixels

When GOES-R is available:

- Mature, well tested GOES-EFD system
- EFD-prepared, EFD-friendly user community
- Acceptance by scientific community

Ongoing GOES EFD Activities

- Advance to a beta version level through continued algorithm/system optimization via test/development iterations
 - GOES image registration
 - Anomaly detection/classification
 - Improved filters for false alarms
- Retrospective validation
 - Preparing a large-area test for year 2012
- Increase involvement with end users to ensure sustained and informed use of data/products
 - Determine their decision-making bottlenecks
 - How to best use fire-candidates from GOES-EFD?
 - How to best combine GOES-EFD product with conventional wildfire identification means?

- Improved temporal filtering
- Event tracking
- Etc., etc.

Ongoing GOES EFD Activities

- Continue to increase project visibility/acceptance
 - Scientific publications/presentations
 - Workshops
 - Project website
- Exploring mechanisms to implement a complete baseline system for deployment
 - NRT GOES imagery collection and ingest
 - IT infrastructure for data processing and repository/archiving
 - GOES EFD software
 - Output data products
 - Forest Service interface with GOES EFD

Conclusions/Potential Benefits

- GOES EFD shows significant promise while still in the alpha development phase
 - System enhancements are continuing based on resource availability
- GOES EFD is more successful than at early fire detection than GOES WF-ABBA algorithm
- GOES EFD offers substantially more accurate geolocation of detected fire candidates
- Anticipated results:
 - 20%-50% of wildfires detected before the documented report; 50%-80% within the first hour
- Significant technical advancements of GOES R will improve timeliness and reliability of GOES EFD